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Stochastic Theory of Adiabatic Explosion 
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A stochastic description of an exothermic reaction leading to adiabatic explo- 
sion is set up. The numerical solution of the master equation reveals the 
appearance of a long tail and of multiple humps of the probability distribution, 
which subsist for a certain period of time. During this interval the system 
displays a markedly chaotic behavior, reflecting the random character of the 
ignition process. An analytical description of this transient evolution is devel- 
oped, using a piecewise linear approximation of the transition rates. A compari- 
son with other transient phenomena observed in stochastic theory is carried out. 
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1. INTRODUCTION 

The study of exothermic reactions provides us with some striking examples 
of nonlinear phenomena under nonequilibrium conditions: bistability, os- 
cillations, and chaotic dynamics(~); spatial structures associated to the 
formation of flames(2); or finally violent transient behavior, like the igni- 
tion and thermal explosion accompanying typical combustion processes. (3) 

In view of the presence of bifurcations or other kinds of abrupt 
transitions in all the above phenomena, one has the feeling that fluctuations 
should be an integral part of the analysis of exothermic reactions. So far, 
however, practically all the results obtained in the stochastic study of 
chemical reactions are limited to the behavior of the composition variables 
at constant temperature. (4) It is the purpose of the present paper to develop 
the theory of fluctuations in the particular--yet quite important~case of 
adiabatic explosion, that is to say, of combustion in a closed vessel. 
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Let us briefly comment on the reasons for which the stochastic theory 
of nonisothermal chemical systems is conceptually more difficult than the 
theory of their isothermal counterparts. When a reactive collision takes 
place in an ideal mixture, certain molecular species disappear and other 
species are created, at a rate which is proportional to the frequency of 
encounters of the particles involved. This allows us to model chemical 
reactions as a Markovian birth and death process and to construct the 
explicit form of the matrix of transition probabilities per unit time. But 
when, in addition to composition, temperature is involved as a key variable, 
it becomes necessary to model the process of energy transfer taking place 
between the system and the external reservoirs, and possibly within the 
system itself as a result of the exothermic or endothermic character of the 
reaction. 

Recently we studied this problem in the limiting case in which the 
reaction mixture is a dilute gas, derived the form of the transition rates 
appearing in the master equation, and discussed the range of validity of 
fluctuation-dissipation type of theorems in the presence of thermal con- 
straints. (5) As expected, the temperature dependencies introduce exponen- 
tial nonlinearities in the coefficients of the master equation, and this greatly 
complicates the analysis. For this reason we focus hereafter on a case in 
which the analysis of thermal fluctuations reduces to a pure death process, 
namely, the problem of adiabatic explosion. As we shall see, despite the 
uniqueness of the stationary state regime attained in this process, during the 
transient evolution of the system fluctuations present some quite unex- 
pected properties. 

In Section 2 we summarize the results of the phenomenological de- 
scription. Section 3 is devoted to the construction of the master equation 
and the computation of mean first passages times. This analysis suggests 
that fluctuations tend to slow down the evolution prior to the explosion 
time and, on the contrary, to accelerate it afterwards. A confirmation of 
this result is obtained in Section 4, devoted to numerical simulations. We 
show that, in the course of time and for certain classes of initial conditions, 
the probability distribution flattens and subsequently develops two peaks 
corresponding, respectively, to molecules which have not yet reacted and to 
molecules for which combustion has already taken place. An analytical 
approach to this phenomenon of "bifurcation unfolding in time" is under- 
taken in Section 5. In the final Section 6 we comment on the implications 
of the results and make suggestions for further work. 

2. P H E N O M E N O L O G I C A L  D E S C R I P T I O N  

When an exothermic reactive mixture (like for instance a fuel) is 
placed in a vessel heated at a sufficiently high temperature To, the heat 
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released by the reaction and the temperature will progressively increase 
and, if the rate of heat removal is insufficient, the reaction will end in an 
explosion. Such an explosion is referred to as thermal.  We are interested in 
the limit in which the process is adiabatic, that is when all the reaction heat 
is disposed of in the heating of the mixture. Although this condition is not 
strictly verified in most experimental situations, the above idealization 
should still provide a satisfactory description of the ignition period in an 
open system, whereby an abrupt transient is observed during the evolution 
toward the final stable steady state. 

The simplest nontrivial case is that of a single irreversible exothermic 
reaction: 

X >A (2.1) 

Let T be the temperature, k(T)  the temperature-dependent rate constant, Y 
a suitably scaled intensive variable describing chemical composition, r~ and 
cv, respectively, the heat of reaction and the specific heat at constant 
volume. Assume furthermore that the system is well stirred, so that one can 
discard transport phenomena. The mass and energy balance equations then 
read: 

dt 
(2.2) 

d T =  d -  r v k ( T )  ~ ev-~7 - r,-~T x = 

It is immediately seen that Eqs. (2.2) give rise to the conservation condi- 
tion: 

cv T O + rvx o = c. T + r.~ = const ~ c v Tma • (2.3) 

where (T 0, x0) are the initial values of (T, ~) and (Tmax, ~ = 0) are the final 
ones, after the reaction has been completed. It should of course be realized 
that, in actual fact, combustion is never complete as the inverse reaction 
A--> X is no longer negligible when the population of X becomes small. In 
the sequel however we shall adopt for simplicity the idealized picture, Eq. 
(2.3). 

Substituting ff and T from Eq. (2.3) to Eqs. (2.2) one obtains one of the 
alternative forms: 

d T =  k(T)(Tma X - T )  (2.4a) 
dt 

o r  

dt c v } 
(2.4b) 
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The solution of Eqs. (2.4) is plotted in Fig. la, for a temperature depen- 
dence of k(T) given by the Arrhenius law, 

k ( T )  = k0exp(- Uo/RT ) (2.5) 

where U0 is the activation energy. It is seen that the reaction rate reaches 
abruptly its maximum value at a time which will be referred to as the 
"explosion time. ''(6'7) 
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Fig. 1. (a) Time evolution of composition variable (curve a), temperature (curve b) and 
reaction rate (curve c) in an adiabatic explosion. Parameter values: Uo/R = 10000, Tma x 
= 2000, rv/c  ~ = 1200. (b) Kinetic potential associated to Eq. (2.4b). 
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It is useful to visualize the evolution in terms of a kinetic potential, the 
integral of the right-hand side of Eq. (2.4b) over %. As seen in Fig. lb, this 
potential has a single minimum at ~ = 0, an inflection point for values of 
attained at the explosion time, and no further extremum in the region of 
high values of ~. In a typical situation the system is started in this latter 
region. A slow evolution, reflected by the flatness of the potential, first 
takes place; but when the vicinity of the inflection point is reached, 
becomes quickly depleted and finally tends to extinction. 

From the thermodynamic point of view the situation is particularly 
simple: the system eventually reaches equilibrium, but for certain classes of 
initial conditions, sufficiently far from the final state, it shows transiently a 
markedly nonequilibrium behavior. This is reminiscent of a variety of 
familiar phenomena observed in chemistry and hydrodynamics, like for 
instance, the chemical oscillations and wave trains appearing after an initial 
induction time, when the Belousov-Zhabotinski reaction takes place in a 
closed vessel (for a recent account, see Ref. 8). 

3. STOCHASTIC FORMULATION 

As has been pointed out in the Introduction, in view of the highly 
nonlinear and violent character of the phenomenon of explosion it would 
be desirable to incorporate the effect of fluctuations in the description. For 
the simple model considered in the previous section, the central quantity to 
be evaluated becomes thus the probability P(X, E; t) of having, at time t, a 
number of particles equal to X and a translational energy content within 
the vessel equal to E. 

Clearly, each time one molecule of X undergoes the reaction X ~ A, 
the energy content of the system is increased by an amount equal to the 
heat of reaction per molecule, which we again denote by r~ (cf. Fig. 2). In 
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Fig. 2. Simple three-level model adopted for the mechanism of reaction X-~'A. 
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other words, the conservation relation, Eq. (2.3), is exact even if fluctua- 
tions are  included. In terms of the extensive quantities X, E it reads: 

rvX o + E o = rvX + E = const = Ema x (3.1) 

It can also be expressed in terms of the intensive variables by introducing a 
suitable size scaling parameter N. Specifically, 

N(rvx  + cvT ) = const = NCvTma X (3.2) 

which has the same structure as Eq. (2.3), except that x and T are now to 
be interpreted as random variables, distributed according to a probability 
ensemble P. The equation of evolution for this ensemble is readily found by 
realizing that Eqs. (3.1) or (3.2) allow us to reduce the number of indepen- 
dent variables to a single one. If we choose composition to be the pertinent 
variable, we are led, for our model defined by Eq. (2.1), to a pure death 
process 

d p ( x ; t )  = / ~ ( X +  1 ) P ( X +  1 ; t ) -  ~ t ( x ) e ( x ; t )  (3.3a) 

where the death rate is given by [cf. Eq. (3.2)] 

- -  U 0 

/ . t(g) = k0Xexp{ AB [ Zmax_~-~vTCv)(g/N)] } (3.3b) 

Notice the use of the Boltzmann constant instead of the gas constant. This 
is natural in the present context, since in the stochastic description we deal 
with changes of states associated with the disappearance of one molecule at 
a time. u 0 is defined such that 

uo/ k a = Uo/ R 

In the sequel we will be interested in the solution of the master 
equation (3.3) corresponding to the initial condition: 

P(X;  O) = dkrx,N (3.4) 

It is then clear that Eq. (3.3) needs only to be solved in the interval 
0 < X < N. Moreover, 

d P(N;  t) = - I~(N)P(N;  t) (3.5a) 

whereas 

d p  �9 ( j ; t ) = t ~ ( j + l ) P ( j + l ; t ) - t ~ ( j ) P ( j ; t ) ,  0 < j < N  (3.5b) 

and 

a p(0;  t) = g ( 1 ) e ( 1 ;  t) (3.5c) 
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By solving Eq. (3.5a) explicitly and by introducing the solution successively 
into the equations for P ( N  - 1 ; t), P ( N  - 2; t), etc., one obtains the follow- 
ing explicit representation of the probability function: 

N 
N Hm=N_.+l~(m) E e- ' ( j ) '  - e-'(N-")'] 

P ( N  - v; t) = • U . . . .  . 
j : N - , + ,  -  (s)l 

(3.6) 

Unfortunately this form is not very helpful, as it constitutes an alternating 
sum whose coefficients increase factorially with increasing j .  Numerical 
calculations show that beyond the rather low value of N = 50, the evalua- 
tion of (3.6) leads to convergence problems. For this reason we resort, for 
the remaining of this paper, to an alternative method. 

Let us plot the transition rate/~(X) appearing in the master equation 
[cf. Eq. (3.3)] as a function of X. We obtain the bell-shaped curve shown in 
Fig. 3a. In order to get an insight about the effect of fluctuations on the 
time course of the process we evaluate the mean first passage time T x x for 
reaching some final state X f  starting from a state characterized l~y I the 
presence of exactly X 0 molecules in the vessel. We use the well-known 
formula (9) 

X0 

Txo, Xj = ~] 1 (3.7) 
j=  xi+ l I~(J) 

The Euler-Maclaurin asymptotic evaluation of the sum leads to the result 

Txo ,X ,= f ; cy  dz l -t- 1 + o ( 1 )  (3.8) 
o 2 (xs) 2 (x0  

The first term of the right-hand side is the deterministic value of the 
transition time, obtained by straightforward integration of the phenomeno- 
logical equation (2.2). The remaining terms represent corrections due to the 
fluctuations. The point is that they lead to opposite effects, according as the 
X o--~ X f  transition occurs before or after the explosion time. Specifically, 
referring to Fig. 3a, we see that before explosion #(X0) </~(Xf), and as a 
result the correction to the deterministic result is positive. In other words, 
f luc tuat ions  tend  to slow down the evolution prior  to explosion. If on the other 
hand explosion has already occurred we see from Fig. 3a that /,(X0) 
> t , (Xf) ,  which implies a negative correction to the deterministic result. 
Thus, f luc tuat ions  tend  to accelerate the evolution once explosion takes  place.  
Globally therefore, the phenomenon becomes more violent as compared to 
the time course predicted by the phenomenological description. 

The mechanism at the origin of this enhanced violence becomes 
somewhat more transparent by invoking the moment equations. Let us first 
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Fig. 3. (a) The death rate/~(X) plotted against the number of particles X. Parameter values: 
Uo/R = 10000, Tma x = 2000, rv/e ~ = 1200. Note the sharp decrease of/~ for higher values of 
X, leading for X = 103 to a value as low as /~--10 -3. (b) Time evolution of the variance 
<(6X)2)t. Note the enhancement in the vicinity of the explosion time. Parameter values as in 
Fig. 3a. 

pe r fo rm a t runca t ion  at  the level of the second order  semi- invar iants ,  which 
is expec ted  to p rov ide  a sa t is factory  pic ture  as long as f luctuat ions  remain  
extensive.  W e  ob ta in  

d__dt ( (~X)2> = / ~ [ ' ~ ( t ) l  - 2 - ~  .~(t)((6X)2 j (3.9) 

Referr ing  to Fig. 3a we expect  that,  before  the m a x i m u m  value  of /~ is 
r eached  (Sit/OX < 0), f luctuat ions  will be self-accelerated,  whereas  the 
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opposite will be true beyond the maximum value of (31~/3X > 0). Now 
from the phenomenological equation it is obvious that 

d 2 - 0/x d~ 
- - x =  
dt 2 3Y~ dt 

hence the maximum of /z is visited when ~(t) goes through an inflection 
point (cf. Fig. 1). This is the time referred to earlier as the explosion time. 
We expect therefore that an enhancement of fluctuations should take place 
in the vicinity of explosion time. Figure 3b, in which the solution of Eq. 
(3.9) is plotted against time, confirms this prediction. More importantly, it 
shows that the value of the variance at its maximum is extremely large. 
Specifically, choosing -~0 = 103 and ((6X)2)0 = 0 we see that (((~X)2)max 
-----10 s. This is much larger than a Poissonian variance and suggests that 
there should be a time interval during which the system becomes unpredict- 
able, developing some sort of "transient turbulence." Concomitantly, 
higher-order variances should become then as important as the second- 
order one, and the truncation leading to Eq. (3.9) should break down. 
These features are further confirmed by a series of numerical simulations, 
to which we now turn our attention. 

4. NUMERICAL S IMULATIONS 

The time evolution of the probability distribution P(X; t) was deter- 
mined by solving numerically the master equation (3.3). The results are 
shown in Fig. 4. At t = 0 we start with exactly N = 1000 particles [cf. Eq. 
(3.4)] in the region in which the kinetic potential, as function of x (Fig. lb), 
is very flat. Because of the smallness of the deterministic rate in this region, 
we expect that stochastic effects would manifest themselves at a macro- 
scopic level. Indeed, shortly after this initial condition the probability 
distribution develops a width, while its maximum moves only slightly to the 
region of low values of X. A pronounced flattening of the distribution then 
takes place, followed by the appearence of a second peak located at a value 
of X close to zero. Meanwhile the first peak is still centered at values of X 
well above the value characteristic of explosion. The long tail and the two 
peaks subsist for some time, but eventually the system collapses to zero, 
which is an absorbing state attained with probability one. (10) 

An interesting way to summarize the above described stages of the 
evolution is to plot Xm, the most probable value of X, as a function of time. 
This is done in Fig. 5. We see that for short times we obtain a unique 
solution. But there exists a critical time, tc, beyond which new branches of 
solution appear, reflecting the formation of a second peak of the probabil- 
ity distribution. Eventually two of these branches coalesce, and the system 
evolves to extinction as combustion is completed. 
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Fig. 4. Successive stages of evolution of the probability function P(X; t). (a) The initial peak 
at X = N flattens slightly and travels very slowly to the left. (b) A long tail of the probability 
function develops and a second hump  appears. (c) The two humps  are comparable. (d) The 
initial max imum has practically disappeared and the system is about  to reach extinction. 
Parameter values: Uo/R = 10000, Tma x = 2000, rJ% = 1200. 

The situation described in Fig. 5 is strongly reminiscent of the phe- 
nomenon of bifurcation, whereby new branches of solutions come into play 
when some suitable control parameters are varied. The difference is of 
course that in the present case the appearence of new branches can only be 
a transient. We coin the term "bifurcation unfolding in time" for this 
phenomenon in order to capture both the similarities and the differences 
with its more familiar "static" counterpart. 

Between the time of development of the long tail and the time of 
disappearance of one of the two peaks of the probability distribution, the 
system will display a markedly random behavior: there will be appreciable 
deviations between mean and most probable values, and the variance will 
attain macroscopic proportions. Numerical evaluation of the second, third, 
and fourth-order variances shows indeed that during the coexistence of the 
two maxima, these quantities are considerably enhanced. This corroborates 
the qualitative arguments developed in Section 3. 
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Fig. 5. The most probable value of the probability function, Xmax, plotted against time for 
the evolution described by Fig. 4. At t C two new extrema emerge through the mechanism of 
"bifurcation unfolding in time." After a time of coexistence only the new maximum subsists, 
as the system is reaching extinction. During the time interval A the two maxima are of the 
same order of magnitude. 

From the standpoint of combustion our result means that temporarily 
the population of molecules will split into a part for which combustion has 
not yet taken place, and a part for which combustion is practically 
terminated. Within the framework of our assumption of a well-stirred 
mixture, this statement can only be understood in a statistical sense: 
namely, when a great number of independent combustion experiments is 
taking place, in some realizations ignition and explosion will tend to be 
delayed, whereas in others they will be accelerated. In other words, ignition 
time becomes a random variable whose variance is directly related to the 
coexistence time of the two probability peaks. 

The significance of these results will become more transparent when 
spatially inhomogeneous fluctuations will be allowed. In this case, in a 
single experiment, the population of molecules involved in the process will 
tend to separate in space, thereby producing a "nucleus" of combustion 
which eventually will contaminate the entire system. Such a phenomenon 
will be the precursor of propagating wave fronts or flames that are known 
to occur in combustion. (2'~) 

The computer simulations just reported involve, perforce, a finite 
number of particles. It is therefore natural to inquire about the effect of the 
size parameter N on our results. We have performed a series of Monte 
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Carlo simulation for values of N up to 10 5. We have found that the effects 
described earlier in this section subsist, provided that the initial condition is 
sufficiently far from the inflection point of the kinetic potential. An 
analytical study of this question is carried out in Section 5. 

5. AN ANALYTIC APPROACH 

As has been pointed out, the explicit solution of the Master Equation 
for a pure death process as given by Eq. (3.6) is unfortunately of little use 
for the study of asymptotic properties. Instead one proceeds with the 
following Ansatz. (12) Set P(X; t) = expNq)(x; t), where x = X / N  and (b is 
assumed to be Taylor expandable in powers of N-1.  Then to lowest order 
the Master Equation (3.3a) is replaced by the nonlinear partial differential 
equation 

0-~ qS0 = ~(x) [ exp( 0-~ q)0) - 1 ] (5.1) 

where 

g(x)  = lim 1 

Furthermore assume qS0(x;t ) to be expandable in powers of x -  ~(t), 
where ~(t) is the corresponding solution of the deterministic equation [cf. 
Eq. (4.5)]: 

d -  
2 i  x = - (5.2) 

qS0(x; t ) = a o + a , [ x -  ~(t)]  + a 2 [ x -  ~(t)]  2 + . . .  

Identification of same powers of x - ~(t) in (5.1) leads to the conclusion 
that a~ =- 0 and that a2, which is descriptive of the width of the distribution, 
satisfies the differential equation 

d 2~'(N)a 2 + 2~(~)a 2 (5.3) ~ a  2 = 

For an infinitely sharp initial condition at X = N, i.e., 2 -- 1, the solution of 
(5.3) is simply 

l(y~) = _ 2g2(2) f l d s  g-2(s ) (5.4) a 2- 

Thus for a linear pure death process where ix(X) = kX, we find a 2 l (~)=  
-2k2~2f~ds(ks)  -2 = -2~(1  - 2). As in this case ~ = e -kt, it follows that 
the probability distribution, initially centered with zero width at 2 = 1, 
gradually spreads out as it follows the deterministic path until ~--  1/2, 
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Fig. 6. Large amplification of the spread of probability packet occurs [cf Eq. (5.5)] when the 
death rate abruptly switches from a low value ~(~) to the value associated to explosion, g(x). 

whereupon it begins to narrow and become asymptotically infinitely sharp 
again at the absorbing boundary ~ = 0. 

Now in a pure death process the variation in time of each P(X; t) 
depends solely on itself and or its right-hand neighbor(s). Consequently for 
a given initial condition the evolution of P(X; t) is not changed if the death 
rate is modified for values less than X. Consider the case depicted in Fig. 6. 
We find 

a 2- '(~) = _ 2~2(ff)f~_lds ~ - 2 ( s )  
X 

= - 2~2 (~ ) s  ~ - 2 ( s )  + a2- ' (~  ) - -  
X 

(5.5) 

Therefore if g ( x ) / F ( f )  >> 1, that is to say, if the system is started in a state 
sufficiently remote from explosion in which the kinetic potential (Fig. lb) is 
very flat, there will be a large amplification of the spread of the probability 
packet. As we will see presently, this mechanism is at the basis of the 
appearance of the chaotic regime referred to in the previous section. To this 
end we examine the qualitative features of the behavior of the probability 
distribution as depicted in Fig. 4 when the death rate is of the form given 
by (3.3b). 

As x decreases from 1 to some value ~'n, the death rate ~(x) scarcely 
varies and remains very small. As x further decreases from ~'t to some value 
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f2, ~(x) increases abruptly and reaches a value g(S"2) >> g(fl). Finally as x 
diminishes to zero, g(x) subsides and eventually vanishes. 

Now as time evolves, a probability packet, initially centered at x = 1, 
will move slowly to the left, its peak extremely close to the solution of the 
deterministic equation and with a slowly increasing spread. At some time 
the left edge of the packet will reach fl .  This part of the probability 
distribution will now travel at much greater speed to ~2 with a very large 
spread. As time proceeds a new packet will start to form to the left of f2 as 
the packet to the right of ~'1 gradually wanes. The time ~- it takes for the 
transfer of probability from the neighborhood of fl to  ~2 can be estimated 
by dividing the width of the probability packet at fl by the velocity of its 
peak as given by the deterministic equation. Thus 

w~N-l/21 '(gl)l '/2g(:l) g-Z(s)]1/2 
and if/~ is assumed to be practically constant in the interval [fl, 1], we have 
the following estimate: 

~~0[ N-l~2 
~(~1) I (5.6) 

As one would expect, as N increases unboundedly, T goes to zero for any 
given initial state ~'1. Nevertheless this decrease, which is also observed in 
the numerical simulations, is relatively slow, all the more so that for the 
initial conditions of interest in the combustion problem ~(~1) can be 
extremely small. For instance, for the numerical values of the parameters 
used in Figs. 4 and 5 ~-1(~1) is of the order of 10 3. It follows that the 
duration of the chaotic region remains macroscopic for N's as large as 1014. 
This conclusion is significant in two respects. First, it shows that the 
thermodynamic limit acts in a less stringent way on the time-dependent 
properties of the system than on its static properties. More importantly, in 
any realistic situation fluctuations will originate as relatively short ranged, 
local events: a typical region encompassed by a coherent fluctuation will 
contain a restricted number of particles, probably even less than 1014. The 
question of taking the thermodynamic limit will therefore simply not arise 
in this case. We conclude that the results described in this work reflect an 
intrinsic property of combustion, and should be observable with presently 
available experimental techniques. 

In the above discussion it was tacitly assumed that the time needed to 
attain state ~'1 (Fig. 6) starting from the initial condition has a given, finite 
value of O(1). It is, however, clear from the expression of/z(x), Eq. (3.3b), 
that the slope of/z can be made extremely small, provided that the initial 
temperature, To, is chosen to be sufficiently low. For instance for the 
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parameter  values used in our paper, choosing T o = 400 ~ K instead of 
T o = 800 ~ K diminishes the initial reaction rate by a factor of the order of 
10 -6 . It  follows that the time needed to attain the explosion region will 
become very long. This will allow the probability distribution of the system 
to develop a substantial width, leading to a much larger value of coexis- 
tence time of the two extrema. In short, we expect that the coexistence time 
could remain of O(1) even in the thermodynamical  limit N ~ oe, as long as 
the reaction rate remains small for sufficiently long time. The latter 
condition can in turn be ensured if the initial state is sufficiently far from 
the explosion region. This point is further elaborated in forthcoming work 
by Frankowicz and Malek Mansour  (13) and Frankowicz and Nieolis. (14) 

It would appear  from the foregoing analysis that the time dependence 
of the probability distribution can be inferred, at least qualitatively, from 
one basic property of the death rate, namely, the abrupt  variations of its 
slope. If this is the case, then a similar behavior for the probability 
distribution should be observed when the death rate ff is of the form given 
in Fig. 7. 

It will now be shown that when the death rate has this piecewise linear 
form, the explicit solution of the Master Equation can be cast in a form 
that allows one to study directly its asymptotic behavior. 

First consider the case where the death rate is as shown in Fig. 8. 
Beyond M the death rate is not given, but P(M;t) is assumed to be a 
known function f(t). It  is required to find P(J; t) for L < J < M. How ff is 

W R L 2' 

Fig. 7. 

k 1 

o N x 

Piecewise linear representation retaining the qualitative features of the death rate [cf 
Fig. 3a and Eq. (3.3b)]. 
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Death rates used in the derivation of Eqs. (5.7a) and (5.7b). 

X 

defined to the left of L will not influence these values of P(J; t), so let us 
simply make it vanish for X < L (we shall assume throughout that the 
macroscopic quantity L is an integer). The generating function G(s,t) 

M - 1  x - L  . = ~x=LS P(x, t) satisfies the inhomogeneous partial differential equa- 
tion 

~ G = k ( 1 - S ) ~ s G + l ~ ( M ) s M - L - l f ( t ) ' o t  6(s ,  0 ) = 0  

whence 

G(s, t) = l~(M) fo'dU f ( u ) [  1 - e -~('-u) + se-~(t-")IM-L-I 

and 

P(J;t)= t~(N)(M; l -  L)fo'duf(u)[l e-k(,-,)]M-a-I _ e - N J ) U - u )  

- L  
(5.7a) 

If L is negative the formula remains valid, as can be verified for instance by 
direct substitution into the Master Equation. However, should L lie to the 
right of M (i.e., when the slope k is negative) as in Fig. 8b, then the result 
needs to be amended to 

P(J;I) = iJ(N)(L f ]~l) fotd. f(u)[e-k<t-u'- |lM-J-le-tX(J,(t-u) 
(5.7b) 

The main conclusion to be drawn from Eq. (5.7) is that if the death rate is 
linear in some interval [A,B], and P(B;t) is known, then VX ~ [A,B], 
P(X; t) can be expressed as a known integral transform of P(B; t). The 
piecewise case depicted in Fig. 7 can now be readily solved by repeating the 

kr  previous result. Let P ( X ; 0 ) =  8x, N, so that P(N; t ) =  e -"(lv)~. Then VX 
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E[R,N], P(X;t) [and in particular P(R;t)] is a known transform of 
P(N; t). As/~ is again linear in the interval [W,R] and P(R; t) is known, it 
follows that VX E [W,R], P(X; t) is another known transform of P(R; t), 
and consequently of P(N; t). By repeating this process we see that when the 
death rate is piecewise linear, each P(X; t) is expressible as some integral 
transform of P(N; t). Furthermore these integral transforms are very conve- 
nient for asymptotic analysis. 

More specifically, from Eq. (5.7b) and Fig. 7, we see that for R < J 
< N, 

I[ L' -- J --1)  fotdse-~(N)S[ e-k'(t- s) -- 1]N-J-le-~(J)('-s) P(J;t) t~(N)\ L , -  N 

where k~ is the slope of the linear death rate. In this case the integral 
transform is elementary and yields 

1 ~(N) ( L l - J - 1 )  -~(J)t[e-~C,,_ 11 N-J, 
P(J; t) = ki ~ [ ~ J  ~ L 1 - N e 

R ~< J < U  (5.8) 

A direct asymptotic analysis of this form for large N leads to the result that 
P ( J ;  t)~.,e u+(j;t) where the dominant term is 

~0(j; t) = (/1 - j ) l n ( / ,  - j )  - (1 - j ) l n (1  - j )  - (l, - 1)ln(/1 - 1) 

- k , ( j  - l , ) t  + (1 - j ) l n ( / - k "  _ 1) (l ,  =-- L , / N , j  =-- J / N )  

Solving O+o/3j]j=j.(o = 0 to find the peak of the distribution yields 

j*(t) = 1 - (ll - 1)[ e -k ' '  - 11 

which is indeed the solution of the deterministic equation. Now in the 
interval W 4 J < R we can write 

P(J; t) = fotdsKs(t - S)P(R;s)  (5.9) 

where 

[ L 2 - J -  1) 

and P(R;s) is given by an expression similar to Eq. (5.8). Asymptotic 
analysis shows that the dominant order for large N, 

P ( R ; s ) ~ e x p N [ - ~ ( r ) s  + (1 - r)ln(e -k'~ - 1)] 

and 

Kj(t - s ) ~ e x p N [ - i ~ ( j ) ( t  - s) + (r - j ) l n ( e  -~:~'-~) - 1)] (5.10) 
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where j  -- J//N, r ~-- R /N.  For typical values of the parameters as chosen 
in this paper, it turns out that P(R;s) and K s ( t - s )  behave in the 
neighborhood of their maximum as Gaussians of very different width. For 
P(R;s) a broad distribution is found, the width being inversely propor- 
tional to 

~(r) ,/2 
{ I ~(r) + k , ( 1 -  r)] -i-Z~_ r } ~O(#(r) )  

thus confirming the result (5.6). On the other hand, K j ( t -  s) is a much 
sharper distribution, having its maximum at s = t - ~'s, where 

I ln[ /~(j) ] (5.11) 

From Eq. (5.9) it follows that one can put approximately P(J; t)~P(R; t - 
~-s), corresponding to an infinitely sharp distribution for K s. Now one sees 
from Eq. (5.11) that even if J and J '  are quite different, i.e., J' - J ~  O(N), 

zs ,_  ~.s~ ~2 in /z(j') (5.12) 
~(J) 

will be relatively small with respect to the width of P(R, s) if [k21 is large. 
Thus during some time interval of the order of Eq. (5.6), the values of 

P(J; t) and P(J'; t) will be close for J,J'  ~ [W, R], i.e., a flat distribution 
will appear in this interval. 

Finally for J ~ [0, W] we have 

t t P(J;t) = (_ K j ( t -  s)P(W;s)ds 
dO 

l r 

=f0 Kj( t -  ,)fo'd, - u)P(R;,) (5.13) 
and the asymptotic analysis can be pursued as before. 

The main advantage of replacing the analytically awkward death rate 
(3.3b) by a piecewise linear form rests thus on the fact that in the latter case 
explicit forms can be given for the solution of the Master Equation which 
allow direct asymptotic analysis, while preserving at the same time the 
interesting qualitative features of the original problem. 

It is perhaps worth pointing out that the idea of piecewise linearization 
can be extended to the general birth and death case. Although no simple 
solution can be given of course in this case, it nevertheless allows one to 
replace the original Master Equation by a finite subset of integrodifferential 
equations. The size of this subset is directly related to the combined 
number of segments that provide a sufficient qualitative representation of 
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the birth and death rates. We shall explore this point further in a subse- 
quent publication. ( ~5~ 

The behavior of general classes of birth and death processes in the 
limit of large size N of the system has also been investigated by Kurtz. (16) 
This author derived a number of powerful theorems connecting the original 
jump process, the diffusion process described by a Fokker-Planck equation 
whose drift and diffusion coefficients are, respectively, the first and second 
transition moments of the original process, and the Gaussian process 
described by a linearized Fokker-Planck equation. Specifically he showed 
that for N ~ m and for arbitrarily long but finite times, the three processes 
are related provided they are so initially and provided that the transition 
rates are sufficiently regular. For instance, the supremum of their difference 
is bounded (in probability) by terms of the order in N/N. 

As in our problem we initially start with a deterministic condition 
( T =  T 0, x = 1) and the process is terminated at a finite time when the 
system reaches the absorbing state, Kurtz' theorem should apply. There are, 
however, two new elements that come into play. First there are additional 
smallness parameters other than N - l  controlling the behavior of the 
system, like the slope of the death rate/~ in the initial stage and the ratio of 
its values slightly below the inflection point and at the point of maximum 
reaction rate. As we saw previously this may well attenuate the effect of 
(InN/N) term and produce momentarily appreciable deviations from the 
Gaussian regime. A second and related point is that in many realistic cases 
everything happens as if the reaction rate were not differentiable around 
the explosion regime. Such cases are well described by our piecewise linear 
idealization, but cannot be covered directly by Kurtz-type theorems. We 
believe therefore that our results suggest some new and hitherto unexplored 
aspects of certain classes of Markovian processes. 

6. D ISCUSSION 

In this paper we have studied the time-dependent aspects of a simple 
model of combustion. We have shown that, if the system is started in a 
range of values corresponding to a very slow deterministic rate, certain 
stages of the subsequent evolution are characterized by markedly random 
behavior, reflected by the appearance of long tails and multiple humps in 
the probability distribution. We have proposed a plausible interpretation of 
this onset of internal differentiation in time and carried out an analytical 
study for an idealized piecewise linear death rate. 

We believe that the behavior outlined here should be detectable by 
presently available experimental techniques and that it is shared by a host 
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of other problems of interest in physics and chemistry including the 
problem of nonthermal, purely chemical explosion. (4'6) Actually, the princi- 
pal requirement appears to be the existence of a rate function displaying 
the characteristics of Fig. la: A long slow induction period, followed by a 
sharp increase up to a maximum, and terminating to zero after another 
period of reduced activity. Such rate functions describe systems possessing 
a final state which is reached in time without having to overcome a 
threshold, or "activation energy" related to the coexistence of multiple 
attractors. This is clearly seen from the structure of the kinetic potential 
associated to Eqs. (2.4), which was already given in Fig. lb. 3 

Some remarks concerning the difference between this type of evolution 
and other cases envisaged in the literature are now in order. An interesting 
class of problems, studied in depth by Suzuki, (17) refers to the passage from 
an initial unstable state to a final stable one. As it turns out, in a bistable 
system in which the stable states are completely symmetrical around the 
unstable state, the evolution acquires an essentially statistical character, 
since the system can depart from the initial state only by fluctuations. In 
this case one also observes the phenomenon of "bifurcation unfolding in 
time," as illustrated in Fig. 9a. The difference from the results of Figs. 4 
and 5 is twofold. First, the bifurcation shown in Fig. 9a is completely 
symmetrical. And second the critical time t c in Suzuki's theory increases 
with the size of the system, varying roughly as In N, whereas in our case it 
has a finite value since the time evolution leading to explosion occurs 
within a finite time interval whose length depends on the system's intrinsic 
parameters. Alternatively, while in Suzuki's theory the new peaks of the 
probability distribution subsist forever once they appear, in our case they 
have a finite life span which depends on N. 

A different class of problems arises when, in a bistable system, the 
initial condition is asymmetrically disposed with respect to the attractors. 
As illustrated in Fig. 9b, what happens then is that the system evolves to 
the closest attractor via a one-humped distribution, but eventually it 
develops a second hump as a result of the diffusion over the potential 
barrier that inevitably takes place as long as N -  ~ is not strictly zero. (~8'j9) 
The "bifurcation in time" is now asymmetrical in much the same way as in 
Fig. 5. One difference subsists however, which is again related to the time 

3 Note that the existence of a kinetic potential does not guarantee automatically that one can 
write a Fokker-Planck equation for the probability distribution, and even less that one can 
argue in terms of a state and/or time-independent diffusion coefficient. As a matter of fact, 
as we see from the analysis of the preceding sections, the coupling between systematic and 
stochastic factors is quite intricate in the present problem, and it is not clear whether it can 
be expressed adequately in terms of a "drift" and a "random force" as in simple diffusionlike 
processes. 
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Fig. 9. (a) Kinetic potential and time evolution of the most probable value Xma X in Suzuki's 
problem. (b) Kinetic potential and time evolution of the most probable value Xma• in 
Kramers' problem. 

scales involved. Specifically, as diffusion over the barrier is an extremely 
slow process, the critical time t c in Fig. 9b is the Kramers '  time, t c~  
exp(NAU/o2), AU being the magnitude of the barrier and a an effec- 
tive diffusion coefficient. This is exceedingly long whenever A U/o 2 has a 
finite value. 

External noise constitutes still another class of problems leading to 
internal differentiation in time. (2~ Specifically, starting from a one hump 
distribution centered on a unique solution of the deterministic equations, 
external multiplicative noise having a sufficiently large value of the vari- 
ance may transform this initial condition into a mult ihumped distribution. 
This evolution looks qualitatively like Fig. 9a, except that tc is now size 
independent since the variance of intensive quantities in the case of 
external noise is of O(I).  

In conclusion, this short comparison shows that the "bifurcations in 
time" analyzed in the present paper provide a new, hitherto unexplored 
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model of differentiation in nonequilibrium system, having a purely internal 
origin: Unlike problems involving external noise (2~ or structural stabil- 
ity (21'22) the system need not be continuously perturbed by the external 
world. Rather, the deviations of the dynamics from equilibrium that are 
created temporarily are sufficient to induce, during some time interval, an 
internal differentiation within the system. 

Several extensions of the work reported in this paper can be envisaged. 
The analysis of open systems and of inhomogeneous fluctuations are two 
obvious possibilities. Moreover, it would undoubtedly be of interest to 
investigate the implications of this behavior in a field like biology in which, 
more than anywhere else, the potentialities of living matter are unfolding as 
time flows. A beautiful example has recently been pointed out by Gold- 
beter and Segel (23) in connection with the successive developmental events 
occurring during the life cycle of the amoebae Dictyostelium discoidum. 
Further examples Should be found in problems related to evolution, in 
which the historical element is ubiquitously present. 
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